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We study a branched polymer model defined on a lattice with coordination number q. We
introduce g different site fugacities, corresponding to all possible incoming polymer bonds on a

site. The model is solved exactly on the treelike Bethe and Husimi lattices.

In particular, the

interesting case of two nonzero fugacities is treated. The model presents qualitatively different
phase diagrams when the coordination number of the lattice is changed. The system has in some
cases one polymerized phase, but in other cases a second polymerized phase appears. The conditions
for the existence of this second polymerized phase are established.

PACS number(s): 61.25.Hq, 64.60.Kw, 05.50.+q

I. INTRODUCTION

The study of linear polymers in solution modeled by
self-avoiding walks (SAW) on a lattice has been the sub-
ject of active investigation for many years [1]. Just as
linear polymers, randomly branched polymers have been
described by different types of lattice animals [2,3], trails
[4,5], silhouettes of dynamical trails [6], and chains with
annealed crosslinks [7].

In the last few years, there has been considerable inter-
est in new multicritical phenomena that occur in polymer
systems. Recently, Orlandini et al. [8] studied the statis-
tical mechanics of silhouettes of dynamical trails on the
two-dimensional Sierpinski gasket by an exact real-space
renormalization group method. In that model, two fugac-
ities for sites with two or four incoming polymer bonds
are introduced, but the model is not self-attracting, that
is, no nearest-neighbor fugacity is considered. They re-
ported that the model displays two multicritical points,
the usual © point which marks the separation between
swollen and denser polymers and a second multicritical
point between two polymerized phases.

In this paper, we study a branched polymer model de-
fined on a lattice with coordination number ¢ that has
silhouettes of dynamical trails as a particular case. The
model consists of an annealed mixture of m-functional
units (1 < m < g). We introduce g site fugacities corre-
sponding to g different functional units, or equivalently,
to the possible number of incoming polymer bonds on a
site. The model is solved exactly on the treelike Bethe
and Husimi lattices. In particular, the interesting case
of two nonzero fugacities is treated; when they corre-
spond to two and ¢ incoming polymer bonds on a site,
the model reduces to silhouettes of dynamical trails for
q = 4, which approaches the two-dimensional square lat-
tice. The model presents qualitatively different phase di-
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agrams when the coordination number of the lattice and
the number of permitted incoming bonds are changed.
For some values of those parameters, a second polymer-
ized phase appears. The conditions for the existence of
two polymerized phases are established.

Another model for branched networks with similar
characteristics is the model of polymers with annealed
crosslinks, which turns out to be equivalent to the n-
vector model of magnetism with two and four spin inter-
actions, in the formal limit n — 0 [7]. Since crosslinks
cannot be defined unambiguously on the Bethe lattice,
the model defined by Stilck and Wheeler [7] on that lat-
tice is a particular case of our model. In this reference
only one polymerized phase is reported for mean field
and Bethe lattice calculations, but in the case of the
Husimi lattice with coordination number 4 a second or-
dered (polymerized) phase appears.

This paper is organized as follows. After defining the
model in Sec. II, the exact solution on the Bethe lattice
for different cases is shown in Sec. III, with special em-
phasis on the case where the fugacity of sites with two
incoming polymer bonds is nonzero; this case has the
SAW problem as a particular limit. However, since there
are no loops on the Bethe lattice, the solution presents
some undesirable features. For the special case of sil-
houettes of trails, a better treelike approximation, with
four site loops (squares), known as the Husimi tree, is
used in Sec. IV, giving more satisfactory results. Final
conclusions and discussions are presented in Sec. V.

II. DEFINITION OF THE MODEL

We consider a lattice model for branched polymers.
In this model, polymer networks are defined with the
following rules.

(i) Each site of the lattice is occupied by one monomer
(an m-functional unit), which may be connected by poly-
mer bonds with one or more nearest-neighbor monomers
forming a polymer. Monomers bonded to only one
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monomer are polymer ends.

(ii) Every monomer bonded with two or more
monomers must be connected through polymer bonds to
a polymer end. Therefore networks without end sites are
forbidden.

If the only relevant interaction present is the excluded
volume effect between monomers, the model reduces to
the usual lattice animal problem. We include a statistical
weight K, for each site with n incoming polymer bonds,
with 1 < n < g, where q is the coordination number of
the lattice.

In the grand-canonical ensemble, the partition func-
tion for the system on an N-site lattice with coordination
number g will be

oo oo q

Zv({EaY) = Y - D) I B Tv({an)d), (1)
a1 =0 ag=0 n=1

where a,, is the number of sites with n incoming polymer

bonds, and I'y({e,}) is the number of configurations

allowed by the above mentioned rules with fixed values

ofas,...,ay ('y =0if Y a, > N).

In this model K is the activity of a polymer end (our
definition is slightly different from the usual definition
[9] where one-site polymers are possible). In terms of the
analogy between polymer models and the n — 0 limit
of the magnetic n-vector model [1], the parameter K; is
equivalent to an external magnetic field and therefore the
phase diagrams will be calculated for K; = 0. Rule (ii)
mentioned above implies, in this case, that the end points
of a polymer network will be confined to the boundary
of the lattice.

The statistical weight K, for linear chains is usually
taken as a bond fugacity, instead of a site fugacity. Both
treatments are equivalent, so we set all the statistical
weights as site fugacities in order to write the partition
function in a compact form.

ITI. SOLUTION ON THE BETHE LATTICE

In this section we solve the problem of equilibrium
polymerization on the Bethe lattice, i.e., in the central
region of a Cayley tree [10]. Like many treelike struc-
tures, the Cayley tree with coordination number ¢ may
be generated by attaching ¢ subtrees to a central site; and
every (M + 1)-generation subtree may be constructed by
connecting (¢ — 1) M-generation subtrees to a new root
as indicated in Fig. 1. This property allows us to build

FIG. 1. Construction of a (¢ = 3, M = 3) subtree with
q = 3 and M = 3 generations by attaching ¢ — 1 = 2 subtrees
with ¢ = 3 and M = 2 generations.
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recursion relations for partial partition functions defined
on subtrees, which are numbered according to the con-
figuration of the root. This model may be solved on the
Bethe lattice in a way which is similar to the one used for
the self-attracting self-avoiding walk (SASAW) problem
[11], so some details will be skipped.

If we label go the partition function on a subtree with
no polymer bond on the root, and g; when a polymer
bond is present (Fig. 2), the resulting recursion relations
are

00 =55 (90 ) e (o) (o)
(2)

o =3 (371) e (o) (o)
(3)

where, for the sake of convenience, we introduced Ko,
which will be taken as unity for all calculations. Now, if
we define the ratio

(M) Q§M)

we obtain only one recursion relation, namely,

q

q— 1 n—1
Zl ( n—1 ) Kn A
! _ n=
A = 1 )
> ( ‘- ) K, A
=0

n

) (5)

where we have omitted the number of generations and
denoted by A’ the value of A considering one additional
generation.

Connecting g subtrees to the central site we arrive at
the (semi) grand partition function for the M-generation
Cayley tree

q
ZM=Z<Z)K7198_"9?' (6)

n=0

Taking the limit M — oo this function gives the ther-
modynamic behavior of the model on the whole Cayley
tree. Since we are interested in the solution on the Bethe
lattice, we will use this partition function to define den-

TT Ty

1
FIG. 2. Root configurations associated with the two partial
partition functions of subtrees on a Cayley tree with ¢ = 3.
Straight lines represent empty bonds and zigzag lines repre-
sent polymer bonds.
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sities at the central site, such as the density of sites with
i incoming polymer bonds

(3)1{1'93%91
pi = -z (7)

In the thermodynamic limit A tends to the fixed points
of the recursion relation Eq. (5), defined by the equation
A’ = A; and densities may be expressed as functions of
these fixed points as follows:

C@me

pPi = —3
Z(i)KnA"

n=0

Among the fixed points of Eq. (5) only the stable ones
represent thermodynamic phases. In regions of the phase
space where more than one stable fixed point exist, it is
necessary to apply the equal area rule for determining
the phase diagram (a first order line is obtained).

In general, for the recursion relations A

AL({A;]), 4,7 = 1,...,s, the fixed point A*
(A}, A%,..., A%) is stable if the matrix M, whose ele-
ments are
0A
M, ;i = —= N 9
2 8AJ A ( )

has all the eigenvalues with modulus less than one.

An interesting particular case of the model is obtained
when we assign the statistical weight to the polymer bond
instead of assigning it to the different types of monomers;
or equivalently when we set K; = Kz for ¢+ > 2 and
K; = 0 (known in the literature as lattice animals).
With this assignment, the recursion relation presents a
fixed point associated with the nonpolymerized phase
(A* = 0), which is stable for K < qul and one or
more fixed points corresponding to the polymerized phase
(A* # 0). Moreover, one of them tends stably (with

eigenvalue less than unity) to zero when K — (E%*I) +.

Therefore the transition between the nonpolymerized and
the polymerized phase is of second order, showing the
same critical behavior as SAW’s.

With our definition, the case K; # 0; K; =0 fori > 1
corresponds to the dimmer problem. Equation (5) in this
case reads

I K,

ST - DKA 1)

This result agrees with previous calculations for dimmers
on the Bethe lattice [12].

From Eq. (5) it is clear that when K, # 0 and K,_1 =
0 there exists a fixed point A* — oo which, according
to Eq. (8), corresponds to a polymerized frozen phase
(pm=q =1; pn =0if n < q). To study the fixed point
A — oo we define the new variable o = %, satisfying the
recursion relation

a = . (11)

The corresponding fixed point is a* = 0, whose stabil-
ity is easier to analyze.

It is of particular interest to consider two nonzero fu-
gacities, making all the others equal to zero. This choice
of the parameters may be interpreted as follows: we
have two kinds of monomers with different fugacities that
could be linked to m and n neighbors, respectively.

Analyzing the recursion relations for 4 and o [Egs.
(5) and (11)] and the eigenvalues of their fixed points we
found different features according to the values of ¢, m,
and n (with ¢ > m > n > 2). They may be grouped in
the following way.

m < q. There is no fixed point a* = 0, therefore the
polymerized frozen phase is not present, but for some val-
ues of ¢, m, and n a second ordered phase (not frozen) ap-
pears. When two polymerized phases are present we will
refer to the lower density of type-K,, monomers (lower
Pm) as polymerized 1 and to the other as polymerized 2.
Note that the polymerized 2 phase for ¢ = m is a frozen
phase.

(1) n = 2. The stability line of the nonpolymerized
phase is Ky = E—}i and on this line a fixed point A* # 0
vanishes, allowing a second order transition between the
nonpolymerized and the polymerized 1 phases.

(2) n > 2. The transition to the nonpolymerized phase
is always of first order, because the eigenvalue Anxp cor-
responding to the fixed point A* = 0 is equal to zero for
all K,,, and K,,.

m =gq. (1) n = g — 1. The fixed point associated
with the frozen phase (a* = 0) does not exist. If ¢ > 3
we have Anp = 0, giving a first order transition. For
q = 3, when K3 = 0 we recover the SAW model that
has a second order transition, but for any other value of
K3 the transition is of first order. Therefore, there is a
critical point for K3 = 0.

(2) n < ¢ — 1. In this case (which excludes ¢ = 3)
the fixed point a* = 0 corresponding to the frozen phase
appears. The transition to the nonpolymerized phase is
always of first order (Axp = 0), except when n = 2, where
for small K, we have a SAW behavior.

For n < ¢ — 2 the eigenvalue Apy; = %%’ |a=0 is zero for
all K,, and K,,; as a result, the transition to the frozen
phase will always be of first order.

For n = q—2 the eigenvalue Ap; is not constant. There-
fore the polymerized 2 phase is stable only in some re-
gions of the phase space, and the phase diagram may have
different multicritical behavior depending on the stability
of the other phases.

We have analyzed, in a general way, the model re-
stricted to only two parameters. We found a variety
of situations that led to many different phase diagrams
depending on the values of ¢, m, and n. In the follow-
ing subsection we will study particular cases for n = 2,
which are of interest because they model the polymeriza-
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tion problem with linear and branched polymerized be-
haviors. Then we will analyze two particular cases with

n # 2.

A. Linear-branched behavior

First, we will consider the problem for any value of g
and m, and then we will analyze some particular values
to illustrate the different situations.

When only K3 and K, are different from zero, Eq. (5)
reads

(¢— 1)K A+ ( a1 ) KpA™1
A= . (12)
—1)(q— -1
14 @=NE=2 K, 42 4 (qm ) K A™

According to Eq.
nonpolymerized phase is

(12) the eigenvalue from the

Ane = (@ —1)K> (13)
therefore the nonpolymerized phase is stable for
Ky< (14)
2S00

This result is in perfect agreement with the SAW prob-
lem, i.e., in the limit K,, — 0. So, the stability line of
the nonpolymerized phase is

1

Kp(Km) = —— .
2(Km) p

(15)

Now we will analyze the fixed points associated with
the polymerized or polymerized 1 phase (the name de-
pends on the existence of a second ordered phase), look-
ing for a stable one that tends to zero when (¢ — 1)K, —
14+. When such a fixed point exists, we will have a second
order transition (for K,, sufficiently small).

The polymerized fixed point is a positive root of the
polynomial

P(4) = (q;l ) KpnA™ — (7;11__11 ) KpA™?

(¢-1(g—2)

5 K;A%? +1—(¢g—1)K;. (16)

+

It is clear that there is always a root that tends to
zero when (¢ — 1)K, — 14+. We will study the sign
and the stability of this root to determine the region
where a second order transition could occur, i.e., where
limg_1)x,»1+ A* = 0and A <1 (A is the corresponding
eigenvalue). For this purpose we define e = (¢—1)K,—1,
so we are interested in the case € — 0+.

We will analyze the polynomial for A <« 1; we find
three different typical patterns of behavior for m = 3;
m = 4; and m > 5.

For m = 3, the relevant terms of the polynomial and
the eigenvalue for A < 1 and € < 1 are

P(A) ~ —Q~_—2)2£51~_—3)K3A — ¢, (17)
Ar 1+ wKSA. (18)

It is clear that for € > 0 the root is negative for any
K3 > 0. So, in this case we will always have a first order
transition (except for K3 = 0 that corresponds to the
SAW problem). Besides, we can see that for € < 0 there
is a positive root that tends to zero, but it is unstable
according to Eq. (18).

For m = 4, neglecting terms of order greater than A3
and €A?, we have

Pay~ U 5 2) [1 N 1)3(‘1 — 3)K4} A% —¢, (19)

Ax1—(q—2) [1 — W}Q] A% (20)

Therefore, if

3
(¢—1)(g-3)

there is a positive root that goes continuously to
zero when (¢ — 1)K — 14, and the associated
eigenvalue tends to 1—. In other words, we have
a stable polymerized 1 fixed point that tends to the
nonpolymerized fixed point. This means that the line
K,=-1 K, < Gz—ifm is a second order transition

Ky < (21)

q—1° =
line, and the point
1 3
Ky=— Ky= — > 22
RS U P P (22

will be a tricritical point if ¢ > 4. The case ¢ = 4 must
be studied separately.

Finally, for m > 5, repeating the above procedure we
obtain

P(A) ~ (q%fﬁ — ¢, (23)

Arx1-—(qg—2) A% (24)

These equations show that for all K, there is a stable
polymerized 1 fixed point that goes to zero when (g —
1)K; — 1+4. In this case the line K, = ai—l will be a
second order transition line that will end in a critical end
point, since a second ordered phase appears.

The transition polymerized 1-polymerized 2 is always
of first order. This transition line may end on a critical
point or simply continue to infinity depending on the
values of ¢ and m. We found that the critical point only
exists if (8 — m)qg — 16 > 0. Clearly, for ¢ > m > 8 the
transition line goes to infinity.

The coordinates of the critical point (when it exists)
are

2m(qg — m)

Kaer = (g —1)[(8 — m)q — 16] (m — 2)’

(25)
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(g —2)(m —4)?

(q;l) (%nff)%[(s—m)q—lﬁ] (m—2)'
(26)

Kmep =

Some particular values of ¢ and m that show qualita-
tively different phases diagrams follow.

1. g = m = 4 case

First, we will study the polymerized 1 phase. In this
case the polynomial from Eq. (16) takes the form

P(A)=[(g—1)K,— K4 A2+1—(¢—1)K,. (27)

This polynomial has only one positive real root,

* _ (q—l)Kz——l
PGS DK, — Ky (28)

that is well defined if (¢ — 1)K, > 1 and (¢— 1)K, > Ky,
orif (g—1)K; <1 and (¢ — 1)K3 < K4. The eigenvalue

associated with this fixed point may be written in the
forms

2(1+ K4A2)
Ap1 = — S Sl ot e
P1 1+ 15 (= 1)K, A2 (29)
or
— — 2
Apy = 1 2lla= K> — K] A (30)

1+ (q— 1)K,A%2  °

where we have used P(A) = 0.

From these equations it is clear that |Api| < 1 only
if (¢ — 1)K, > K4. Consequently, we have a stable
polymerized 1 fixed point in the region where (¢g—1)K, >
1 and (¢ — 1)Kz > K.

To study the stability of the polymerized 2 phase we
note that Eq. (11) in this case reads

" (q—l)Kz+a2

T Kt (@-1EKza®

(31)

Clearly, there exists a fixed point a* = 0. Differenti-
ating Eq. (31) with respect to a and evaluating in a = 0
we obtain
(¢a—1K>

K, )

So, we see that this phase is stable in the region where

K4 > (¢ — 1)K, and the stability line is

K4P2 (Kz) = (q - 1)K2 . (33)

Apy = (32)

Note that it coincides with the stability line of
the polymerized 1 phase (for K4 > 1). Hence the
polymerized 1-polymerized 2 transition is always of sec-
ond order.

For (¢ — 1)K, < 1 there is a region where the
nonpolymerized and the polymerized 2 phases are both
stable. Consequently, there will be a first order line that
we determine by the equal areas rule:

2217

The (K, = q—il; K4 = 1) point where two second order
lines converge and continue as a first order line that is
not tangent to any of them is a bicritical point. The
corresponding phase diagram is shown in Fig. 3.

2. ¢q =m = 3 case

The phase diagram for this case (Fig. 4) shows the
features predicted when we analyzed the problem for ar-
bitrary ¢ and m. There is no frozen phase, and the
nonpolymerized-polymerized transition is of first order
for all K3 > 0, showing a critical point at K3 = 0. Here
the equation of the equal area rule was solved numeri-
cally and the stability line of the polymerized phase was
found analytically:

1
KZNP (K3) = q—1 ) (35)

K3, (K3) = V2(¢ - )K2[1 — (¢ - 1)K] - (36)

3. q =6; m = 4 case

For these values of q and m, only one polymerized
phase exists and the phase diagram presents a tricriti-
cal point with coordinates given by Eq. (22). In analogy
with the other studied cases, the stability lines are ob-
tained analytically. They are

1
Koy» (K4) = q—1 ) (37)

Polymerized 2

Polymerized 1

1.0 frmmmmmmmm e
0.5 [ Non )
Polymerized
IS e ) - . - L L
0.0 0.5 1.0 1.5 2.0 2.5 3.0

(q_ 1)K2

FIG. 3. K4 against (¢ — 1)K, phase diagram for the Bethe
lattice with coordination number q = 4. The full lines repre-
sent second order transitions and the dashed line locates the
first order transitions. The stability (spinodals) curves are
also shown (dotted lines). The critical lines end in a bicritical
point (BCP).



2218

A.J. BANCHIO AND P. SERRA

1

g—1"

K2NP (KG) =

(39)
As shown in Fig. 5, the phase diagram presents a
critical endpoint, and the first order polymerized 1-
polymerized 2 transition line ends on a critical point

whose coordinates are [see Eq. (25) and Eq. (26)]:

1 2
KZCP = 5’ =

S5cp — 9

3

1.25
1.00 |--=---o_ . Polymerized
0.75 | .
K4 .
0.50 |- ™
%
Non A
0.25 | Polymerized \‘
. i‘
\
i
0.00 L | L ! ! lCP
0.0 0.2 0.4 0.6 0.8

(q—1)K,

FIG. 4. K3 against (¢ — 1)K, phase diagram for a ¢ = 3
Bethe lattice, showing the first order curve (dashed line) and

the spinodal lines (dotted lines), as well as the critical point
(CP) corresponding to the SAW limit K3 = 0.

K, (K3) = M

10

x(1+\/1— 2). (38)
[(¢g— 1)K +1]
(7.

This case is equivalent to the problem studied in Ref.

4(q —1)2K2

4. q =6; m = 5 case

Two polymerized phases are present. The stability line
of the nonpolymerized phase is

As shown in Fig. 6, the phase diagram presents a crit-
ical end point with coordinates

(40)
The first order line and the stability lines of the poly-
merized phases were obtained numerically.

5. g = 6; m = 6 case
A second ordered phase appears, but in this case, as
g = m it is a frozen phase.

The polymerized 2 phase is stable for all K2 and Kg (in
general, for m = ¢ > 5 the polymerized 2 phase is stable
for all K, and K3). The stability lines of the other phases
are

1
Koye (KG) = q—1 ) (41)
—-1)2K2
K6p1 (KZ) _ (q ) 2

C(g-1DKp—1°

(42)

1
K2CEP =

g—1’

3.5 4.0
(q— 1)K2

Kecer =1, (43)
because the second order line ends in a first order one.
The first order line was obtained numerically.
0.8
5
0.7 | Polymer’i_ged 2 .
| . 3
Kg0.6 [—--____ e -C'P e [ Polymerized 2
I - - K [
6
F §
> L S
0.5 [ Non Polymerized 1 [ l’__,—”/—
Polymerized T
CEP ISP
L1 —
[ [Non Polymerized 1
0.4 Lot L PRSI N S [Polymerized
0.8 1.0 1.2 1.4 1.6 ol Lo AT TR I I B B
0.0 05 1.0 1.5 20 25 3.0
(q_f)Kz
FIG. 5. K5 against K> phase diagram for the ¢ = 6 Bethe

lattice, showing the second order line (full line), the first order

curve (dashed line), and the spinodal lines (dotted lines). The

critical line ends in a critical end point (CEP) and the first
order line ends in a critical point (CP).

FIG. 6. Kg against (¢ — 1)K> phase diagram for a ¢ = 6

Bethe lattice, showing the second order line (full line), the
first order curve (dashed line), and the spinodal lines (dotted
lines). The critical line ends in a critical end point (CEP).



B. Branched-branched behavior

In this subsection we treat K,,,K,, # 0 cases, with
g > m > n > 2. We note that with these conditions the
system does not have the SAW limit, therefore, even for
K,, = 0, the polymers have a branched regime. Besides,
the transition to the nonpolymerized phase is always of
first order.

In general, the possible phase diagrams for these cases
are qualitatively the same as those obtained for n = 2,
except that the transition to the nonpolymerized phase is
always of first order. Consequently in some cases a triple
point appears.

Another difference is that for the existence of a second
ordered phase when ¢ > m we have found only a nec-
essary (but not sufficient) condition: m must be greater
than n + 2 (m > n + 2) for having a second polymerized
phase. Therefore we consider here two particular cases
that lead to qualitatively different phase diagrams.

The case we first study here is ¢ = m = 6, n = 4, for
which the recursion relation [Eq. (5)] reads

_ 10K4A% + KgA®

A =
1+5K,A% (44)

We note the existence of a nonpolymerized fixed point
(A* = 0) and it is straightforward to show that this phase
is always stable. So, the transition to this phase will be
of first order.

Working as we did in the last subsection, we find
two nontrivial fixed points corresponding to two ordered
phases, a polymerized 1 and a polymerized 2 phase. The
latter is frozen phase (pg = 1, ps = 0).

The stability lines of these two fixed points are co-
incident. Consequently the transition between these
phases is always of second order, and the transition line
will end in a critical end point on the nonpolymerized-
polymerized first order line. The expression for the sec-
ond order polymerized 1- polymerized 2 curve is

2.5
20
Polymerized 2
1.5
K
6 CEP
1.0 f--mmmmm e . Polymerized 1
0.5 |- Non
[ Polymerized .
N
0.0 kK& Y R R B B
0.0 0.1 0.2 0.3 0.4 0.5 0.6
K,

FIG. 7. K against K4 phase diagram for the ¢ = 6 Bethe
lattice, showing the second order line (full line), the first order
curve (broken line), and the spinodal lines (dotted lines). The
critical line ends in a critical end point (CEP).
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0.40

Polymerized 2

0.30 | -7

L g
K? 0.25

0.20

Polymerized \

\
1

\
1

Owo L al | Il
0.08 0.10 0.12 0.14

K3

1 1

0.18 0.20

L
0.16

FIG. 8. K7 against K3 phase diagram for the g = 9 Bethe
lattice, showing three first order lines (dashed line) joined in
a triple point (TP). The polymerized 1-polymerized 2 first
order line ends in a critical point (CP).

We should add that for K¢ < 5K4(1 — 5K4) there is no
polymerized 1 fixed point.

The first order line was calculated numerically, by the
equal areas rule. The resulting phase diagram is shown
in Fig. 7.

A particular case with ¢ > m that shows a second
ordered phase and a triple pointisq =9, m = 7,and n =
3. For this case the first order lines and the stability lines
were calculated numerically. The corresponding phase
diagram is shown in Fig. 8. Note the appearance of a
triple point that was not present in the phase diagrams
obtained for n = 2.

The undesirable feature of having for ¢ = m a frozen
second ordered phase, and the fact that the stability of
the nonpolymerized phase is independent of K,, for all
cases, suggest the study of our model on the Husimi lat-
tice. As will be shown, the inclusion of closed loops (only

elementary squares) entails the disappearance of those
nonphysical properties.

IV. SOLUTION ON THE HUSIMI LATTICE

In the present section we will study the polymeriza-
tion problem on the Husimi lattice, i.e., on the cen-
tral region of the Husimi tree. We will consider the
most relevant case, namely, the one which approaches the
two-dimensional square lattice and models silhouettes of
trails, that for our model is the particular case ¢ = m = 4,
n=2.

The Husimi tree [13] is constructed in the same way
as the Cayley tree, except that the basic elements are
squares instead of lines. For this reason, we only have
elementary closed loops (elementary squares).

The procedure is the same as in the Bethe lattice.
First, we obtain recursion relations for the partial parti-
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tion functions. Then, we define new variables in terms
of which we will express the densities, and for those vari-
ables we find recursion relations. The stable fixed points
of those relations will determine the different phases. Fi-
nally, we study the stability regions of the fixed points,
and make the equal areas construction in order to find
the first order transition line (in regions where there are
more than one stable fixed point).

The different types of roots associated with the corre-
sponding partial partition functions are shown in Fig. 9.
To avoid counting prohibited configurations like isolated
clusters, it is necessary to distinguish whether the poly-
mer that occupies the two lower sides of the root square
contacts the external surface or not. This explains the
existence of g and g3, because the only difference be-
tween them is that the polymer that crosses the root g»
reaches the external surface, and that of g3 does not.

For the partial partition functions associated with
those roots, the recursion relations are

96= (g0 + K292)° + 2K3 g3 (g0 + K292)
+K393[K290+Ka (g2 + g3)], (46)

95 = 2K391(g0 + K292)* + 2K291(g0 + K292)
X [K2g0+Ks(g2 + g3)]
+2K291[Ka2g0 + Ka(g2 + g3))* + 2K3 g3, (47)

95 =K397 (g0 + Kag2) + 2K3 g3 [K2go + Ka(g2 + g3)]
+ {[K290+Ka(g2 + 93)]> — (K290 + Kags)®}, (48)

95=(Kago + Kags)® . (49)
Defining
A=% p=-2 -5 (50)
9o 9o 9o

we obtain the new relations

2K, A
A= Dz {(1 + K2B)? + (1 + K12B)[K; + K4(B + C]
+ K3A% + [K, + K4(B + O))*}, (51)

1
B = 5 {K3A?[1+ 2K, + K;B + 2K4(B + C)]
+ K2+ K4(B + O)® — (K2 + K4C)*}, (52)

o L] . E
9 g, 9. 95
FIG. 9. Root configurations associated with the three par-
tial partition functions of subtrees on a Husimi tree with
q = 4. Straight lines represent empty bonds, zigzag lines
represent polymer bonds, and dotted lines may be occupied
by a polymer bond or not. The arrow means that the polymer

network is connected to the boundary and the crossed arrow
means that the polymer does not reach the boundary.

(K2 + K4C)3
L
C'= 5 , (53)
where we defined
D= (1+ K, B)®>+2K3A*(1+ K,B)
+K3A? Ky + Ks(B+C)] . (54)

The (semi) grand partition function is
Z =g} + K297 + 2K2g092 + Ka(95 + 292 g3)  (55)

and the densities are

K,A? + 2K,B
1+ K2A?2 + 2K2B + K4B2 + 2K4,BC’

p2 = (56)

B K4(B? + 2K,BC) 57)
P4 T K,A% + 2K,B + K,B? + 2K,BC

Analyzing Egs. (52) and (53) and considering Egs.
(56) and (57) we note the existence of the following fixed
points associated with the corresponding phases.

(1) A = B = 0; C # 0. This phase corresponds to
the nonpolymerized phase. As a consequence of having
C # 0 the spinodal of the nonpolymerized phase will
not be independent of K4. This happens because of the
inclusion of closed loops.

(2) A, B, C # 0. This fixed point is associated with
the polymerized 1 phase.

(3) A=0; B, C # 0. This phase corresponds to the
polymerized 2 phase. Note that this phase, as a result of
including closed loops, is no longer a frozen phase.

(4) A = 00; B # 0, C = 0. This fixed point is unstable
for all values of the parameters, therefore it does not
correspond to a thermodynamic phase.

Except for the stability of the nonpolymerized phase,
all stability regions and stability lines were calculated
numerically. The first order line (determined by the equal
areas rule) was also obtained numerically.

The phase diagram for this case is shown in Fig. 10. We
found that the transition lines are no longer straight lines
as in the Bethe lattice solution (Fig. 3). The multicritical
behavior is also different. In this case a tricritical point
is found in the polymerized 1-polymerized 2 line and the
second order nonpolymerized—polymerized 1 line ends at
the first order transition line. Then a critical end point
appears. Their coordinates are

Kopop = 0.33330, Ky, = 0.99990, 5
58

Koo = 0.32701, Ky, = 0.99254.

The stability line of the nonpolymerized phase is
5;%3- if K, < K}

Kae (K2) = § 4 1252 8K, —4 if Ko > K& (59)
1 2 = 29

(V=

where K} is the positive real root of the polynomial
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K
p(K3) = —2"1 (9K2 + 6K, +4) — 1 (60)

that is obtained by imposing the condition /\Sl), =
/\&2;), = 1, where A; (i = 1,2,3) are the eigenvalues of M
corresponding to the nonpolymerized fixed point (note

that for this fixed point we have )\&21), = )\1(\?1?, for all val-
ues of Kz 5 K4)

V. CONCLUSIONS

A model of branched polymers with annealed mixture
of polyfunctional monomers is solved exactly on Bethe
and Husimi lattices. In the Bethe lattice solution we
studied the phase diagrams of the polymer model, in gen-
eral and for many particular cases. We have to emphasize
the variety of diagrams that may be obtained modifying

20 (a)

Polymerized 2

Polymerized 1

Non
Polymerized

0.0k P B | R B

0.0 0.5 1.0 1.5 2.0
(q_1)K2
1y
1.04 (b) —
L Polymerized 2
1.02 |- —
L
L ! . TCP
K4 1.00 |- CEP e R =" ]
0.98 ; —
[ Non Polymerized 1
I Polymerized
0.96 —
N R P P E R R N
0.975 0.980 0.985 0.990 0.995 1.000
(‘I")Kz

FIG. 10. (a) K4 against (¢ — 1)K2 phase diagram for the
Husimi lattice with coordination number ¢ = 4. The full lines
represent second order transitions and the dashed line locates
the first order transitions. The stability (spinodals) curves
are also shown (dotted lines). The critical end point (CEP)
and the tricritical point (TCP) are difficult to distinguish at
this scale. (b) Amplification of the CEP-TCP region.

the relation between the coordination of the lattice ¢ and
the number of incoming polymer bonds on a site n and
m. The existence of two ordered phases for some values
of g, m, and n is reported. For n = 2, a condition for
the existence of a second ordered phase is established.
This condition is verified in other problems that present
a second ordered phase, e.g., our model on the Husimi
lattice and silhouettes of dynamical trails on a Sierpinski
gasket [8].

The Bethe lattice solution has some peculiar features.
When m = q, the second polymerized phase is a frozen
phase. We also show that, for n = 2, the second order
line between the nonpolymerized and the polymerized 1
phases is independent of K, for all cases. This feature
of the second order line is present in several models that
have the SAW as a particular limit. The SASAW model
[11] and the n-vectorial model with four spin interactions
[7] studied on the Bethe lattice present the same behav-
ior for the second order phase transition line. For both
models this line depends on the second thermodynamic
parameter when treated on the Husimi lattice (which is
a better mean-field-like approximation than the Bethe
lattice).

On the Husimi lattice of coordination number ¢ = 4,
we study the particular case of two nonzero fugacities
corresponding to two (K3) and four (K4) incoming bonds
on a site, which approximates silhouettes of trails on the
two-dimensional square lattice. The results obtained for
our model on the Husimi lattice are qualitatively sim-
ilar to the calculations on the Bethe lattice, but some
important differences must be emphasized. The phase
diagram on the Husimi lattice seems more realistic, both
polymerized phases are not frozen, and the second order
line between the nonpolymerized—polymerized 1 phases
depends in this case on the value of K4, because of the
inclusion of closed loops. The multicritical behavior is
also different. The ©-like point is a bicritical point on
the Bethe lattice, but on the Husimi lattice it is a critical
end point and a tricritical point appears on the phase
transition line between both polymerized phases.

It is not clear that such a phase diagram with two or-
dered phases is possible only on treelike lattices. In the
Husimi lattice (and only in this lattice) a mapping be-
tween the model of polymerization with crosslinks and
the SASAW exists [14]. Therefore, on the Husimi lat-
tice, the SASAW has a second polymerized phase; how-
ever, it is known that this phase does not appear for the
SASAW problem on regular two-dimensional lattices
[15,16], fractal lattices [17], and on the treelike Bethe lat-
tice [11]. Then, one might ask if the second polymerized
phase is present in the square lattice solution or not.

The problem of silhouettes of dynamical trails, which
is equivalent to our model with K, and K, nonzero for
lattices with coordination number equal to 4, was studied
recently on the Sierpinski gasket (a fractal lattice with
fractal dimension less than 2 and coordination number
equal to 4) [8]. In this reference two polymerized phases
and the existence of a new multicritical point between
these phases are reported. Two polymerized phases in
two dimensions were also found in two-tolerant trails [8],
vesicles [18] and self-attracting self-avoiding loops [19].
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A preliminary study of our model on the square lat-
tice using transfer-matrix techniques [20] also supports
the idea that the phase diagram shown in Fig. 8 is qual-
itatively correct for the square lattice, but the nature of
the multicritical behavior is an open question and new
studies of this phase transition would be interesting.
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